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Finite-size effects in molecular dynamics simulations: Intermediate scattering function and velocity
of sound. III. Theory and application to a model krypton fluid
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We describe a method for obtaining the intermediate scattering functionI (Q,t) from a computer simulation:
it is an extension of our earlier calculation@Salacuse, Denton, and Egelstaff, Phys. Rev. E53, 2382~1996!# for
the t→0 limit. We use this approach to obtainI (Q,t) for low Q and t from molecular dynamics~MD!
simulations of a model krypton fluid whose atoms interact via a truncated Aziz pair potential, and the results
are compared over their range of validity toI (Q,t) determined by the standard MD method and also by a time
expansion approach. In its range of validity our approach is much more efficient than the standard MD method;
however, it covers a restricted range oft due to the movement of density fluctuations~sound waves! through
the simulated fluid which produces an anomaly in the time behavior ofI (Q,t). By analyzingI (Q50,t) the
velocity of sound in the simulation is determined, and the results compare favorably with published experi-
mental results for the sound velocity of liquid krypton.

DOI: 10.1103/PhysRevE.64.051201 PACS number~s!: 61.20.Gy, 61.20.Ja, 02.70.Ns, 05.70.Ce
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I. INTRODUCTION

The intermediate scattering functionI (Q,t) plays a sig-
nificant role in describing fluid structure since it is the spa
transform~transform variableQ! of the Van Hove correlation
function G(r ,t), which describes the structure of a fluid
both space~r! and time~t!. It is also the frequency~v! trans-
form of the experimentally accessible dynamic structure f
tor S(Q,v). MoreoverI (Q,t) can be obtained from molecu
lar dynamics~MD! simulations; but the standard method@1#
of obtaining I (Q,t) from simulation data is limited by the
restriction thatQ>2p/L, whereL is the edge length of the
simulation cube: a restriction that applies also to the ca
lation of the static structure factorS(Q)5I (Q,0). An alter-
native approach to calculatingS(Q) and I (Q,t) from simu-
lation data was presented in a previous publication@2#: it has
the advantage that bothS(Q) and I (Q,t) can be calculated
~under appropriate conditions! for all wave vector magni-
tudesQ, includingQ→0. It was necessary that certain crit
ria involving the radial distribution functiong(r ) @in the case
of S(Q)# and the Van Hove correlation functionG(r ,t) @in
the case ofI (Q,t)# were satisfied. Here we refer to the sta
dard method of calculatingS(Q) andI (Q,t) from simulation
results as the ‘‘vector method,’’ and the approach presen
in Ref. @2# as the ‘‘scalar method.’’ In a subsequent paper@3#
the scalar method was applied to the calculation ofS(Q),
and the results were compared to data obtained from ca
lations using the modified hypernetted chain~MHNC! inte-
gral equation. The results of the two methods agreed nic
for the states chosen. In the present work, as well as in
vious publications@2,3#, we are concerned only with uni
form, isotropic fluids.

In this paper we apply the scalar method to the time
main, and show that it can be used to obtain short time d
on I (Q,t) at low values ofQ. Then we determineI (Q,t) for
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a range ofQ values, includingQ50, from MD simulations
for a dense krypton fluid. For comparison we calcula
I (Q,t) from simulation data using both the standard a
proach and the time expansion approach. The effects
sound waves limit the time interval over which the sca
method and the vector method accurately giveI (Q,t). We
use this fact to estimate the velocity of sound in our sim
lated fluid and suggest a general technique of determin
the velocity of sound in a simulation.

The remainder of this paper is organized as follows.
Sec. II we give the salient features of both the scalar a
vector approaches to calculatingS(Q) and I (Q,t), and the
time expansion method of determiningI (Q,t). In Sec. III we
describe the MD simulations. The results of theI (Q,t) cal-
culations are given and commented upon in Sec. IV. The
Sec. V, we present our method of obtaining the velocity
sound in a simulation and compare our estimate with exp
mental results. In Sec. VI we summarize our results. W
conclude the paper with two Appendixes. In Appendix A w
describe the analysis required to obtainI (Q,t) by both the
scalar and vector methods from simulation data. In Appen
B we consider how many-body forces and the size~number
of particles! of a MD simulation affect the velocity of sound

II. METHODS OF CALCULATING I „Q,t…

The intermediate scattering functionI (Q,t) is related to
the Van Hove functionG(r ,t) by @4,5#

I ~Q,t !5E dr exp~ iQ•r !@G~r ,t !2r#, ~1!

wherer is the density of the fluid andG(r ,t)dr is propor-
tional to the probability of finding a particle within a volum
elementdr at positionr and timet, given that there was an
©2001 The American Physical Society01-1
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arbitrary reference particle atr50 and t50. I (Q,t) is re-
lated to the experimental dynamic structure factorS(Q,v)
by @4,5#

S~Q,v!5
1

2p E
2`

1`

dt exp~ ivt !I ~Q,t !, ~2!

where\Q and\v are the momentum and energy transferr
in a radiation scattering experiment andS(Q,v) is propor-
tional to the scattering intensity. In terms of an equilibriu
ensemble, denoted bŷ&, I (Q,t) is given as@4,5#

I ~Q,t !5
1

N K (
j 51

N

(
k51

N

exp$ iQ•@r j~ t !2r k~0!#%L , ~3!

wherer j (t), j 51, . . . ,N, is the position of thej th particle at
time t.

The vector~standard! method of calculatingI (Q,t) @or
S(Q)# is described in Ref.@1#. Here we note that the vecto
method is restricted to calculatingI (Q,t) at wave vector
magnitudes Q that satisfy the condition QL/2p
51,A2,A3,A4, . . . , so theminimumQ value accessible by th
vector method is 2p/L. We shall refer toQ values that sat-
isfy the above restriction as ‘‘allowable’’ values ofQ. There
is a method that can be used to approximateI (Q,t) at values
of Q.2p/L which are not allowableQ values; however, as
will be shown in Sec. IV, this can lead to significant erro

The equations that describe the calculation ofI (Q,t) by
the scalar method have been developed in a previous p
cation @2#. In this section we present three equations t
characterize the scalar method and give a brief descriptio
the use and limitations of these equations in calculat
I (Q,t). The intermediate scattering function is calculated
the scalar method by Eq. 4~a!, whereu(QR) is defined in
Ref. @2#:

I ~Q,t !5I N~Q,t,R!1
S~0!

N

4

3
prR3u~QR! for large R,

~4a!

where

I N~Q,t,R!54pE
0

R

dr r 2S sin~Qr !

Qr DGN~r ,t !

2
4

3
prR3u~QR!. ~4b!

The quantityI N(Q,t,R) is the finite system~N-particle! in-
termediate scattering function and, as will be seen in App
dix A, may be calculated from MD simulation results. In th
calculation ofI N(Q,t,R), R represents the distance from
central particle and places a limit on the extent of the cal
lation. The second term on the right hand side of Eq.~4a!
correctsI N(Q,t,R) for finite size effects. The largeR restric-
tion on Eq.~4a! requires that theN-particle Van Hove cor-
relation functionGN(r ,t) attains its asymptotic limit forr
.R †Eq. ~31!, Ref. @2#‡. Hence the restriction onR in Eq.
~4a! can be restated by definingR(t) such that
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GN~r ,t !5rF12
S~0!

N G for R~ t !,r ,L/2. ~5!

Thus Eqs.~4! and~5! summarize the scalar method of calc
lating I (Q,t) and the notationR(t) in Eq. ~5! emphasizes the
time dependence of the asymptotic regionGN(r ,t).

The restriction onR given by Eq.~5! has a major conse
quence for the calculation ofI (Q,t). Figures 1 and 2 show
plots ofGN(r ,t)/r at t50, 3.01, and 5.01 ps obtained from
706-particle simulation, and details of the MD simulatio
will be given in the next section. Figure 1~a! shows the gen-
eral behavior ofGN(r ,t)/r and Fig. 1~b! indicates that
GN(r ,t)/r at t50 attains its asymptotic limit 12S(0)/N for
the range 4.0sm,r ,5.39sm , where in our casesm
54.012 Å and 5.39sm is the maximumr value accessible to
a 706-particle simulation. Figure 2 demonstrates that as t
increases the asymptotic region ofGN(r ,t) recedes to larger
values of r. For example, Fig. 2~a! shows the asymptotic
region beginning atr 55sm for t53.01 ps and Fig. 2~b! for
t55.01 ps indicates that the asymptotic region ofGN(r ,t)
cannot be accessed by a 706-particle simulation. As a re
at the thermodynamic state of the simulation, we expect
scalar method applied to data from a 706-particle simulat
to accurately give I (Q,t) at smaller values ofQ, Q
<2p/L, for t no larger than~roughly! 5 ps, since Eq.~5!
cannot be satisfied fort.5 ps. For a 2048-particle system i
the same thermodynamic state, an estimate of the maxim
time at which the scalar approach will accurately giveI (Q,t)
for Q<2p/L is obtained as follows. We scale the 70
particle system resultt55 ps by the ratio of the simulation
cube edge lengths for the 2048-particle system,L

FIG. 1. ReducedN-particle Van Hove correlation function a
time t50, GN(r ,0)/r vs radial distancer in units ofsm ~distance of
Aziz pair potential minimum! for N5706. The dotted line denote
the asymptotic limit@12S(0)/N#. Panels~a! and ~b! highlight the
first and third peaks, respectively.
1-2
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FINITE-SIZE EFFECTS IN . . . . III . . . PHYSICAL REVIEW E 64 051201
515.38sm , and 706-particle system,L510.78sm , to find
the new limit t57 ps. Thus at roughlyt57 ps the
asymptotic region ofGN(r ,t) will recede beyond the rang
accessible to the 2048-particle simulation; hence the sc
method will accurately giveI (Q,t) at smaller values ofQ for
t no larger than approximately 7 ps.

Perhaps a better physical understanding of the limita
imposed by Eq.~5! on the scalar method is obtained by no
ing that, when the asymptotic region ofGN(r ,t) recedes to
r .L/2 @i.e., outside the range of validity of Eq.~4a!#, it is
possible that some structure would be forming in a larger~or
infinite! system over the regionr .L/2. But I N(Q,t,R) can-
not account properly for this structure and thus Eq.~4a! is no
longer valid. Hence, when the sphere of radiusR ~we assume
R is roughly equal toL/2! associated with the calculatio
begins to ‘‘leak structure,’’ the scalar calculation begins
fail. As illustrated above, increasing the size~i.e., number of
particles! in the simulation will allow access to largerr val-
ues and thus allow access to the asymptotic region
GN(r ,t) for greater values of time; this in turn will exten
the time for which Eq.~4a! is valid. We note, however, tha
Eq. ~4a! will give spurious results only for thoseQ values
associated with structure in the regionr .R, or for Q
<2p/L. In addition, for this range ofQ values, errors in
I (Q,t) will occur at smaller values oft asQ decreases. The
opposite case whereQ is larger than 2p/L is discussed be
low.

The vector method will giveI (Q,t) accurately for allow-
able values ofQ and over time intervals less than the tim
required for a sound wave to travelL, the edge length of the
simulation cube. Simulations over longer time intervals w
produce errors inI (Q,t) that arise from the spurious reap
pearance of sound waves as a result of periodic boun

FIG. 2. Same as Fig. 1~b! exceptt53.01 and 5.01 in panels~a!
and ~b!, respectively.
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conditions. However, this restriction on time associated w
the vector method is much less severe than the time res
tion of the scalar method for smallerQ values. ForQ values
that are large relative to 2p/L the scalar approach, like th
vector approach, will accurately giveI (Q,t) with t limited
only by the reappearance of sound waves. At such largQ
values, the factor sin(Qr)/Qr which appears in the definition
of I (Q,t), I (Q,t,R), and I N(Q,t,R) †Eqs. ~25! and ~27! of
Ref. @2#‡ will minimize the effect onI (Q,t) produced by the
structure ofGN(r ,t) at larger. Thus I (Q,t) will be unaf-
fected as the asymptotic region ofGN(r ,t) changes with
time.

A time expansion ofI (Q,t) will allow I (Q,t) to be de-
termined from simulation results for any value ofQ over a
limited range int. We refer the reader to Refs.@4,6# for a
general account of this method of calculatingI (Q,t). Here
we note that our calculation ofI (Q,t) by this approach omits
terms that contain three- and higher-particle distribut
functions. The static structure factorS(Q) is required by the
time expansion method to calculateI (Q,t), while the scalar
approach requiresS(0) for the calculation ofI (Q,t). For
small Q, S(Q) must be obtained from an integral equatio
theory such as the MHNC or from the scalar approach, si
the vector method of determiningS(Q) is inappropriate be-
cause of theQ>2p/L restriction. In this work the infinite
systemS(Q) is obtained from the scalar method as describ
in Refs.@2,3#.

III. MOLECULAR DYNAMICS SIMULATIONS

We carried out a series of MD simulations for a den
krypton fluid in which the particles interacted via the Az
pair potential @7#, characterized by the parameterss
53.579 Å ~atomic diameter! so thatsm54.012 Å ~distance
of potential minimum! and T/kB5200 K ~well depth!, with
the potential truncated at a cutoff distancer 54s. The simu-
lation program is based on the fifth-order Gears predic
corrector algorithm@8# that solves the classical equations
motion for particle trajectories in the microcanonical e
semble with periodic boundary conditions. The simulatio
were performed for two system sizesN5706 and 2048 in a
thermodynamic state defined by the reduced tempera
T* 5kBT/«51.508 and reduced densityr* 5rs350.40.
~For comparison, the critical point of krypton occurs atT*
51.05,r* 50.3.! The system state closely approximates t
state used in a previous publication@3# in which S(Q) was
calculated. The relatively large compressibility associa
with this thermodynamic state makes it ideal to illustrate
scalar approach to calculating bothS(Q) andI (Q,t). For the
706- and 2048-particle systems nine independent simulat
were performed with each simulation consisting of 23105

time steps.
The 706-particle simulation has an edge lengthL

510.78sm , and the allowableQ values associated with th
vector method of calculatingI (Q,t) are given byQsm
50.583, 0.823, 1.01, and 1.166,. . . , with the number of
noncolinear vectorsQ associated with each allowable valu
being 3, 6, 4, and 3, respectively. Please note that for a g
value of Q there are essentially an infinite number of no
1-3
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J. J. SALACUSE AND P. A. EGELSTAFF PHYSICAL REVIEW E64 051201
collinear vectorsQ for which uQu5Q. However, the use o
periodic boundary conditions in the simulation requires t
the Q vectors satisfy the restrictionQ5(2p/L)(k1 ,k2 ,k3),
where ki50,61,62, . . . , with i 51,2,3. This restriction
gives rise to the relatively small number of noncollinear ve
tors Q associated with the allowable values ofQ in the vec-
tor calculation. To obtainI (Q,t) for Q.0 by the scalar
method,R values of 4.5sm and 5.0sm were used in the righ
hand side~RHS! of Eq. ~4a! and the results were then ave
aged to obtainI (Q,t). The technique of averaging over va
ues ofR was employed to obtain a representative value of
quantityI N(Q,t,R) of Eq. ~4! for R in the asymptotic region
of GN(r ,t). Averaging overR values produces a modest d
crease in the fluctuations ofI (Q,t). Finally, S(0)50.91
60.06 was calculated via Eq.~23! of Ref. @2# for the N
5706 case.

In the 2048-particle simulationL515.37sm , the allow-
able Q values are given byQsm50.409, 0.578, 0.708, an
0.816, . . . , and thenumber of noncolinear vectorsQ are 3,
6, 4, and 3, respectively. In the scalar method,R values of
7.0sm and 7.5sm were used in the RHS of Eq.~4a! and the
results averaged to giveI (Q,t). Use of Eq.~23! of Ref. @2#
gave a value ofS(0)50.9060.08. Note that the values ob
tained forS(0) agree with the results of our previous wo
with colleagues@3#. Obtaining I (Q,t) by averagingR may
average out fluctuations inI (Q,t), which suggests that on
should use a singleR value in the velocity of sound calcula
tions. This is because anomalies~fluctuations! in I (Q,t) will
be used in Sec. V to determine the velocity of sound in
simulations. Therefore in calculating theQ50 data,I (Q,t)
was obtained by the scalar method using a singleR value of
5.38sm in theN5706 case and a singleR value of 7.5sm in
the N52048 case.

During the simulation, configurations~particle coordi-
nates! were periodically saved and subsequently analyze
determineI (Q,t). In Appendix A we describe the scala
method and the vector method of obtainingI (Q,t). For both
the 706- and 2048-particle simulations, coordinates w
stored every 1.0023 ps, implying thatI (Q,t) can be obtained
for t51.0023n ps,n51,2,3, . . . . ThequantityI N(Q,t,R) is
a measure of the degree of correlation between particle
figurations separated by timet as noted in Ref.@3#. This
property ofI N(Q,t,R) is used to ensure the independence
the estimatesXk(Q,t) used in Eq.~A2! below to obtain
X(Q,t,M ). Separating successive reference coordinate
used in the calculation ofXk(Q,t) by a time intervalt large
enough to ensure thatI N(Q,t,R)50 implies that the refer-
ence coordinate sets are uncorrelated and hence thatXk’s are
independent. Note that independence of theXk’s is necessary
for sM , or the error in Eq.~A4!, to be calculated by Eq
~A3!. In calculatingI (Q,t) from the 706-particle simulation
data, reference coordinates were separated by a fixed
interval of 30 ps plus a random interval between 0 and 10
giving an average separation of 35 ps. The quan
I N(Q,t,R) decays more slowly as the system size increa
hence the 2048-particle system required a separation con
ing of a fixed interval of 50 ps plus a random interval
between 0 and 20 ps implying an average separation o
05120
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ps. The time separating successive reference coordin
contained a random component to further ensure the in
pendence of the estimatesXk(Q,t).

IV. RESULTS AND ANALYSIS
OF I „Q,T… CALCULATIONS

Figure 3 illustratesI (Q,t) obtained by the scalar metho
~circles! and the vector method~diamonds! from the 706-

FIG. 3. Intermediate scattering functionI (Q,t) determined by
the scalar method~shaded circles! and vector method~diamonds!
applied to 706-particle MD data vs timet: Qsm ~a! 1.01, ~b!
0.823,~c! 0.583. The vertical lines in panels~b! and~c! at selected
values oft represent error bars.
1-4
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particle simulation results forQsm51.01, 0.823, and 0.583
At selected values oft, vertical lines centered on a circl
~diamond! of total length 2dM (2d̃M) represent the error as
sociated with the scalar~vector! method. Note that bothdM

and d̃M are modestly time dependent with the uncertai
slightly larger at smaller values of time. Fig. 3~c! shows that
for Qsm50.583 the results of the scalar and vector meth
begin to diverge fort.6 ps. As noted above, this divergen
is due to spurious results of the scalar method caused by
deterioration of the asymptotic region ofGN(r ,t). This
should be compared to our estimate that the 706-particle
lar result would be valid fort no larger than 5 ps. AsQ
increases, the effect onI (Q,t) caused by the structure o
GN(r ,t), for larger, decreases and thus forQsm50.823 and
1.01 the scalar and vector methods agree nicely. Note, h
ever, that there is a modest disagreement between t
methods forQsm50.823 att511 and 12 ps, which we fee
is due to the greater effect of sound waves as a resu
periodic boundary conditions. We discuss this matter furt
in Sec. V.

Figure 4 comparesI (Q,t) for Qsm50.708 obtained from
the 2048-particle vector calculation~diamonds!, 706-particle
scalar calculation~circles!, and 706-particle vector calcula
tion ~stars!. The 706 scalar results and the 2048 vector res
start to disagree fort>12 ps due to the effect of sound wav
in the smaller system, hence the scalar result is in error
t>12 ps. Note thatQsm50.708 is not an allowableQ value
associated with a 706-particle vector calculation, and
I (Q,t) shown in Fig. 4~stars! was obtained as an averag
over I (Q,t) for Qsm50.583 and 0.823. This averaging tec
nique is a standard approach used to obtainI (Q,t) for non-
allowableQ values by the vector method and, as shown
Fig. 4, can lead to significant errors. Finally, note the mod
‘‘hump’’ in the 706 vector results fort between 11 and 14 ps

FIG. 4. Intermediate scattering functionI (Q,t) determined by
the scalar method~circles! applied to 706-particle MD data an
vector method~diamonds! applied to 2048-particle MD data fo
Qsm50.708. Also shown isI (Q,t) obtained from the vector
method applied to 706-particle MD data by averaging over ‘‘allo
able’’ Q values~stars!.
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which suggests the reappearance of a sound wave in the
particle system at approximately 11 ps.

Figure 5 comparesI (Q,t) for Qsm50.409 obtained by
the scalar method using the 706-particle simulation res
~circles!, by the vector method using the 2048-particle sim
lation results~diamonds!, and by the time expansion ap
proach~dashed line!. We note that the vector method cou
not have been applied to the 706-particle MD data
Qsm,0.583. Fort.6 ps the results of the scalar and vect
methods begin to disagree because of errors in the sc
approach caused by the deterioration of the asymptotic
gion of GN(r ,t) contained within the 706-particle system
The shape of the dashed line indicates that the time exp
sion results are in error fort.5 ps. Qsm,0.409 the vector
method cannot be applied to the 2048-particle MD resu
Comparisons between the 2048-particle scalar res
~circles!, 706-particle scalar results~stars!, and time expan-
sion results~dashed line! are illustrated in Fig. 6 forQsm
50.30. All results shown agree to within error bars fort
<4 ps. The time expansion results are in error fort>7 ps as
evidenced by the shape of the curve depicting these res
The 706-particle scalar results disagree with the 20
particle scalar results and the expansion results att55 ps,
suggesting that the 706-particle scalar results are in error
times t.5 ps.

The following scaling argument suggests that the 20
particle scalar results are correct fort<9 ps in theQ50.30
case. We recall that the scalar method accurately g
I (Q,t), with Qsm50.409, for t<6 ps in the 706-particle
case~see Fig. 5!. But Qsm50.409 relative to a 706-particle
system implies a smaller quantity thanQsm50.3 relative to
a 2048-particle system@since the quantityQL is smaller for
Qsm50.409 andL510.78sm ~706-particle system! than for
Qsm50.30 andL515.37sm ~2048-particle system!# imply-
ing that the 2048-particle scalar results are correct
t<9 ps.

Figure 7 illustratesI (Q,t) ~circles! and S(Q) ~dashed
line! for Q50 with both quantities obtained by the scal

-

FIG. 5. Intermediate scattering functionI (Q,t) determined by
the scalar method~circles! applied to 706-particle MD data an
vector method~diamonds! applied to 2048-particle MD data vs tim
t for Qsm50.409. Also shown isI (Q,t) determined by the time
expansion approach~dotted line!.
1-5



.

ala

l-

e
s

rte
ich

b
y
e
u
by

te
in
re

s
u

D
rk
in

e

sly
ose
data
of

ore
to

ting

.

tor

f
l of

e

6
n-

e
e of

6-
.

te
-

J. J. SALACUSE AND P. A. EGELSTAFF PHYSICAL REVIEW E64 051201
method†S(0) determined by Eq.~23! of Ref. @2#‡. For Q
50.0, I (Q,t)5S(Q) for all values oft. Also, as shown in
Fig. 7~a!, the 706-particle results forI (Q,t) are correct
~within the fluctuations! for t<3 ps and, as shown in Fig
7~b!, the 2048-particle results are correct fort<5 ps.

We now consider the accuracy and efficiency of the sc
and vector methods for calculatingI (Q,t). The uncertainties
~standard deviation! in I (Q,t) associated with the scalar ca
culation and the vector calculation are denoted bydM and
d̃M , respectively, and both of these quantities are invers
proportional toAM , where M is the number of estimate
used to obtainI (Q,t). Also, for a given value ofQ, M had a
common value in the scalar and vector calculations repo
in this work. We shall compare the conditions under wh
the uncertainties in these methods are equal.

In theN5706,Qsm51.01 case@Fig. 3~a!# d̃M /dM.2 at
all values of time with the time averaged values ofd̃M and
dM being 0.016 and 0.007, respectively. Hence the num
of estimates in the vector calculation must be increased b
factor of ~at least! 4 in order to reduce the uncertainty of th
vector approach to that of the scalar approach. This in t
would require extending the length of the MD simulations
a factor of 4. The scalar calculation of an estimate ofI (Q,t)
requires the evaluation of a sum containingN2 terms @Eq.
~A1a! below#, while the vector calculation of an estima
requires the evaluation of four summations, each contain
N terms@Eq. ~A5!#, therefore the vector approach is the mo
efficient method of calculating a single estimate ofI (Q,t).
However, because of the increased number of estimate
quired by the vector approach, the scalar approach is a m
more efficient method of calculatingI (Q,t) for Qsm51.01
at a given uncertainty. In particular, the 706-particle M
simulations were run on an IBM RS/6000 computer wo
station and required a total of 570 h to complete. Analyz
the data to obtainI (Q,t) for Qsm51.01 required roughly 4
min of computer time in the vector calculation, while th

FIG. 6. Intermediate scattering functionI (Q,t) determined by
the scalar method applied to MD data from a 706-particle sys
~stars!, 2048-particle system~circles!, and the time expansion ap
proach~dotted line! vs time t for Qsm50.30.
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scalar calculation required 2 h. However, as previou
noted, to reduce the uncertainty of the vector results to th
of the scalar results would necessitate quadrupling the
set, an effort that would require approximately 2280 h
computer time. Thus overall the scalar calculation is m
efficient, requiring roughly 572 h of computing compared
2280 h required for the vector calculation.

The scalar method has a similar advantage in calcula
I (Q,t) for N5706 in the Qsm50.823 andQsm50.583
cases withd̃M /dM.1.5 for all values of time in each case
The time averaged values ofd̃M anddM are 0.015 and 0.010
in the Qsm50.823 case and 0.026 and 0.018 in theQsm
50.583 case. A relatively large uncertainty in the vec
calculation results from the small number ofQ vectors which
can be used in Eq.~A5! below to obtain an estimate o
I (Q,t). For example, as noted in Sec. III there are a tota
threeQ vectors that can be used to obtainI (Q,t) for Qsm
50.409. Increasing the value ofQ generally increases th
number ofQ vectors available for calculatingI (Q,t) by the
vector method. In theQsm53.14 case there is a total of 3
suchQ vectors. Use of all 36 vectors yields an average u
certainty inI (Q,t) of 0.003; however, using only four of th
36 Q vectors increases the average uncertainty to a valu
0.01. The scalar method of calculatingI (Q,t) for Qsm

FIG. 7. Intermediate scattering functionI (Q,t) ~circles! and the
static structure factorS(Q) ~dotted line! for Q50.0 obtained by the
scalar method. Panel~a! shows results associated with the 70
particle MD data, and panel~b! illustrates the 2048-particle results

m
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53.14 produces an average uncertainty of 0.001. He
even in a case where the vector method has access to a
tively large number ofQ vectors, the scalar method is th
more efficient method of calculatingI (Q,t) at a given un-
certainty.

The source of the difference in efficiency of the scalar a
vector calculations can be understood by noting that Eq.~25!
of Ref. @2#, a basic equation of the scalar method, can
obtained by averaging~integrating! Eq. ~1! over all Q vec-
tors with a fixed magnitude ofQ. Consequently, the scala
method averages over an essentially infinite number oQ
vectors and the vector method averages over a finite num
of Q vectors. As a result the scalar calculation ofI (Q,t) has
a smaller uncertainty than the vector calculation.

V. VELOCITY OF SOUND

We begin by reviewing the behavior ofI (Q50,t). As t
→0, I (Q50,t) becomesS(Q50) which as a value of 0.91
in the N5706 case. At highert Fig. 7~a! shows thatI (Q
50,t) has a local maximum at~roughly! 11.5 ps. We recall
that other anomalies in the behavior ofI (Q,t) were illus-
trated in Figs. 3~b! and 4, occurring at approximately 11 an
12 ps, respectively, and were attributed to the effect of so
waves. Similarly, we shall attribute the aforementioned
havior of I (0,t) to the effect of sound waves, an effect whic
we now discuss in some detail.

Figure 8 shows the cross section of the primary simu
tion cube and the dashed lines denote the crest of a so
wave at various points in time as the wave moves in thx
direction through the cube. As time increases through va
t0,t1,t2 the crest of the wave moves from the center of

FIG. 8. Cross section of the primary simulation cube. The cir
represents the cross section of the sphere of radiusR used in Eq.
~A1! below to calculateXk(Q,t). The dotted lines represent th
crest of a sound wave as it moves through the simulation cube
is initially positioned at the cube’s center at timet0 , moves to the
right end of the cube att1 , and, due to the effect of periodic bound
ary conditions, occupies the left end of the cube att2 , where t0

,t1,t2 .
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figure to the right end of the cube and, due to perio
boundary conditions, appears at the left end of the cub
time t2 . The crest will continue to move to the right and
some point in time overlap with its initial position at timet0 ;
hence the wave will have traversed the whole simulat
cube. The circle represents the cross section of the sphe
radiusR used in Eq.~A1! below to calculateXk(Q,t), where
the i th particle associated with Eq.~A1a! is assumed for
simplicity to be at the cube’s center. In terms of the notat
of Eq. ~A1a!, t0[tk and the position of thei th particle is
denoted asr i(t0). Figure 8 indicates that as the wave mov
toward the right end of the cube the sphere contains les
the crest or dense part of the wave and hence the numb
particles contained in the sphere decreases. The sphere
continue to lose particles until the crest, due to perio
boundary conditions, reenters the left end of the sphere
this point the number of particles within the sphere will st
to increase and will reach a maximum when the wave’s c
reaches its initial position—when the wave has traveled
length of the simulation cube.

For Q50 the sum overj in Eq. ~A1a! counts the number
of particles contained in the sphere of radiusR at time t0
1t, given that there existed a particle at the sphere’s ce
~i th particle! at time t0 . Hence the values ofXk(0,t),
I N(0,t,R), andI (0,t) @Eqs.~A1a! and~4!# will be affected by
the position of the sound wave, and in particularI (0,t) will
register an increase in value and exhibit a local maximum
the timet required for a sound wave to travel the length
the simulation cube. In the above discussion we have
cused on one central~i th! particle contained within the cres
of a sound wave traveling in thex direction. However, it
should be noted that each particle contained within
wave’s crest at timet0 ~Fig. 8!, when used as thei th particle
in Eq. ~A1a!, will effect an increase inI (0,t) at the timet
required for the wave to travel the length of the simulati
cube.

Figure 7~a! shows the averageI (Q,t) obtained from nine
independent simulations. The local maximum that occurs
the vicinity of 11.5 ps indicates that a sound wave requi
roughly 11.5 ps to traverse the length of the simulation cu
We have analyzed the results of the independent simulat
used to obtain Fig. 7~a! and have obtained the location i
time of the maximum value ofI (Q,t) in the vicinity of 11.5
ps for each of the nine simulations. This analysis yields n
values ranging from 11.02 to 14.03 ps with an average va
and standard deviation of 11.8 and 1.0 ps, respectiv
Hence we have determined that a sound wave requires
61.0 ps to traverse the simulation cube, and this correspo
to a velocity of sound in the 706-particle simulation of 36
634 m/s. In the 2048-particle case, analyzing each of
nine simulations associated with Fig. 7~b! indicates that a
sound wave requires 17.662.9 ps to travel the length of the
simulation cube, and this corresponds to a velocity of sou
of 350658 m/s. These are finite system results, which
size dependent. When going to an infinite system we exp
the velocity of sound to have a modestly smaller value si
the compressibility will be larger for the infinite system.

Experimental results@9# give the velocity of sound in
krypton at 300 K for densities of 7.94 and 8.96 atoms/nm3 as

e

nd
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TABLE I. Velocity of sound~m/s! for krypton gas atr58.725 atoms/nm3 andT5301.6 K.

Experimental results
With many-body forces~observed! 335.5
Subtracting calculated effect of many-body forces 317

Scalar MD simulation results
N5706 case 366634
N52048 case 350658
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307.41 and 343.15 m/s, respectively. Linearly interpolat
between these results yields an estimate of the velocity
sound in bulk krypton of 335.5 m/s at the simulation dens
of 8.725 atoms/nm3(r* 50.40) and the simulation tempera
ture ofT5301.6 K (T* 51.508). The velocity of sound dat
are listed in Table I.

When comparing the experimental sound velocity w
the results obtained from the 706- and 2048-particle M
simulations, many-body forces and size effects must be c
sidered. In Appendix B we obtain a value of 317 m/s a
rough estimate of the velocity of sound in bulk krypton at t
simulation density and pressure with many-body effects
moved. We stress that, because our simulations do no
count for many-body effects, these effects must be subtra
from the experimental results to obtain a valid comparison
experimental and simulation results of the velocity of sou
Table I shows that the experimental velocity of sound res
with many-body effects removed falls within the lower lim
of the 2048-particle simulation result and is slightly belo
the lower limit of the 706-particle simulation result. How
ever, as we argue in Appendix B, the sound velocity in
N-particle simulation decreases asN increases. Because o
this, our 706-and 2048-simulation results for the velocity
sound must be reduced before comparing them to exp
mental results that refer to bulk krypton~infinite-N case!. An
estimate of the magnitude of the reduction that must be
plied to theN-particle simulation results was not obtaine
since this would have required a substantial amount of c
puter time. Here we simply note that reducing the simulat
results by roughly 10% brings the simulation and experim
tal results into essentially perfect agreement.

VI. SUMMARY AND CONCLUSIONS

We have applied a method for obtaining low momentu
transfer data on fluids from a computer simulation. Wh
our earlier work with colleagues@2,3# concentrated on the
equal time correlation functions at low momentum transf
we have extended these methods to the finite time correla
functions. Data were obtained for a kryptonlike fluid pa
potential at a state above the critical point, and good ag
ment between this method and other data was obtained
particular, we have concentrated on the intermediate sca
ing functionI (Q,t) at low t and on the velocity of sound fo
this state. We have shown how data obtained with exis
MD methods may be extended using our method. Both
most useful procedures and the limitations of our appro
have been investigated. For example, we have shown
the calculation ofI (Q,t) at smaller values ofQ is affected as
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the asymptotic region ofGN(r ,t) recedes to largerr as t
increases.

Also, we compared MD results obtained by the vector a
scalar methods, and showed how the range of time o
which the two sets of data agreed varies with the value
Qsm . Then we compared scalar results for a 706-parti
system with vector method results for a larger 2048- part
system. These results showed the complementarity of
two methods. We also compared these results to those
tained by a short collision time expansion~Figs. 5 and 6! and
demonstrated the usefulness and the limits to this expans
The fact that the scalar method described here gives v
results for lowt in the limit Q→0 was illustrated by the data
presented in Fig. 7. In addition, we compared the efficien
of the scalar and vector approaches and found that for
cases in whichI (Q,t) was calculated by both methods th
scalar method was significantly more efficient at a giv
level of uncertainty. Finally, we deduced the velocity
sound in our system from the anomalous behavior ofI (Q
50,t) as t was increased. It compared well to the value d
duced from experimental data on real krypton after corre
ing for the three-body potential term.

Thus we have tested the scalar method in a numbe
ways and a variety of conditions. Its usefulness in extend
MD data on finite systems to smaller values ofQ over a
restricted range oft has been demonstrated. We hope t
will lead to its use in a variety of calculations.

APPENDIX A: CALCULATION OF I „Q,t…
IN A MD SIMULATION

We first describe how to obtainI (Q,t) via the scalar
method. Consider a pair of coordinate sets separated in
by time intervalt. One coordinate set, referred to as the r
erence set, contains particle positionsr i(tk), i 51, . . . ,N,
and the other coordinate set, referred to as the correlation
contains positionsr j (tk1t), j 51, . . . ,N. From the refer-
ence set a particlei is arbitrarily selected and all particlesj of
the correlation set contained within a sphere of radiusR with
centerr i(tk) are determined. The factor@sin(Qrij)/Qrij#, r i j
being the distance between particlesi and j, is summed over
all j. Next another particlei is chosen, the same sum is ca
culated, and the process is repeated until every refere
particle has served as a central particle. The average ove
i 51, . . . ,N of the calculated sums represents a single e
mate of the integral in Eq.~4b! that definesI N(Q,t,R). This
estimate, which we denote asXk(Q,t), is expressed analyti
cally as
1-8
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Xk~Q,t !5
1

N (
i 51

N

(
j 51

N H sin@Qri j ~ tk ,t !#

Qri j ~ tk ,t ! J D i jk~ t,R!,

~A1a!

where

D i jk~ t,R!5H 1 if r i j ~ tk ,t !<R,

0 if r i j ~ tk ,t !.R
~A1b!

and r i j (tk ,t)5ur i(tk)2r j (tk1t)u is defined as the minimum
distance between particlesi at timetk and either particlej or
its nearest periodic image at timetk1t.

Averaging M independent estimatesXk(Q,t) obtained
from M independent reference sets gives the following
proximation to the integral in Eq.~4b!:

X~Q,t,M !5
1

M (
k51

M

Xk~Q,t !. ~A2!

The variance inX(Q,t,M ) may be approximated by

dM
2 5

1

M2 (
k51

M

@Xk~Q,t !2X~Q,t,M !#2 ~A3!

and the standard deviationdM represents the uncertainty i
X(Q,t,M ). Hence the integral in Eq.~4b! may be approxi-
mated byX(Q,t,M )6dM and

I N~Q,t,R!5X~Q,t,M !2
4

3
prR3u~QR!6dM . ~A4!

Equation~A4! is used to obtainI N(Q,t,R) from simulation
data, which when substituted into Eq.~4! at sufficiently large
R leads to the scalar approximation ofI (Q,t) for arbitraryQ.

The vector method of calculatingI (Q,t) requires the
evaluation of the ensemble average of Eq.~3! which is ob-
tained from a MD simulation as follows. A reference set
coordinates and a correlation set of coordinates giver j (tk),
j 51, . . . ,N, andr j (tk1t), j 51, . . . ,N, respectively, from
which an estimate ofI (Q,t), denoted byYk(Q,t), is deter-
mined via

Yk~Q,t !5
1

m (
i 51

m
1

N H F S (
j 51

N

cos@Qi•r j~ tk!# D
3S (

j 51

N

cos@Qi•r j~ tk1t !# D
1S (

j 51

N

sin@Qi•r j~ tk!# D
3S (

j 51

N

sin@Qi•r j~ tk1t !# D G J . ~A5!

The quantity in the brackets$¯% represents an estimate o
I (Q,t) and follows from Eq.~3! by factoring the complex
exponential, expressing each factor in its equivalent s
cosine form, and noting thatI (Q,t) is a real function for
05120
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classical fluids. The vectorQ has magnitudeuQu5Q, and
averaging over a set ofm such vectors yields a single est
mate of I (Q,t) given by Eq.~A5!. Then theYk(Q,t) ob-
tained from M independent~uncorrelated! reference sets
yields the following approximation forI (Q,t):

I ~Q,t !5
1

M (
k51

M

Yk~Q,t !6 d̃M ~A6!

whered̃M is the standard deviation associated with the av
age of theYk’s @see Eq.~A3!#.

APPENDIX B: VELOCITY OF SOUND; MANY-BODY
FORCES AND SIZE EFFECTS

We first consider how many-body forces influence t
velocity of sound. Figure 5 of Ref.@10# compares plots of
P/rkT vs r for T5297 K obtained from Monte Carlo simu
lations using pair interactions and obtained from experim
tal results. At the simulation densityr58.725 atoms/nm3,
the simulation pressure is significantly below the experim
tal pressure. A decrease in pressure produces a decrea
density, which in turn implies a decrease in the velocity
sound in bulk krypton as seen by comparing the velocity
sound results of Ref.@9# that were given in Sec. V. Henc
‘‘removing’’ many-body effects reduces the speed of sou
at the state point of interest.

It follows that the estimate of the velocity of sound
bulk krypton of 335.5 m/s must be reduced~many-body ef-
fects removed! before comparing it to the MD simulation
results. It is difficult to precisely estimate the size of t
reduction. However, a rough estimate can be obtained
calculating the sound velocity in bulk krypton at the simu
tion pressure, which as noted above will correspond t
reduced density. The MD simulations produced a pressur
263 atm, which the results of Ref.@9# show to be approxi-
mately 10% below the pressure of bulk krypton at the sim
lation temperature and density. Linearly interpolating b
tween the experimental results in Ref.@9# shows that a
pressure of 263 atm corresponds to a density of 8
atoms/nm3 and a sound velocity of 317 m/s. Note that 31
m/s is our estimate of the velocity of sound in bulk krypto
at the simulation density and temperature with the ma
body effects removed.

We now consider the influence of size effects on the
locity of sound obtained from our simulation results. He
we give a qualitative argument that the velocity of sound w
decrease as the system size become infinite. The isothe
compressibilityKT is related to the static structure facto
S(Q) at Q50 by @4,5#

KT5S~0!KT
0, ~B1!

whereKT
0 is the ideal gas compressibility. Consider the sy

tem depicted in Fig. 8: a primary simulation cube containi
a sphere of radiusR with N representing the total number o
particles in the cube andNR representing the number of pa
ticles contained within the sphere. LetN→ infinite, while R
remains constant; hence the walls of the simulation cube
1-9
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Fig. 8 will recede to infinity. In the infinite-N case,S(0) is
equal to the fluctuations per particle of the particles c
tained in the sphere@4,5#; thus

S~0!5
^NR

2&2^NR&2

^NR&
. ~B2!

The validity of Eq.~B2! requires thatR be large enough so
that the average number of particles contained within
sphere of radiusR, ^NR&, be statistically well defined. In ou
calculation the value ofR ranged between 4.5sm and 7.5sm
which corresponds to a value of^NR& between 215 and 996

Now consider the finite-N case and imagine a particl
contained within the sphere near the right boundary of
simulation cube~see Fig. 8!. Assume the particle moves t
the right and exits the sphere and simulation cube a
because of periodic boundary conditions, the particle’s
age reenters the left boundary of the sphere. This type
v.

L
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correlated motion reduces the fluctuations in the numbe
particles contained in the sphere as compared to
infinite-N case. Hence, for a finite system, periodic bound
conditions somewhat reduce the size of the right hand sid
Eq. ~B2!. Therefore if we assume that Eqs.~B1! and~B2! can
be used to define the finite system isothermal compressib
KT

N , thenKT
N will be an increasing function ofN. The ratio of

the adiabatic compressibilityKs to KT is equal to the ratio of
the isobaric and isometric heat capacities, and, assuming
applies to the finite system case,Ks

N is also an increasing
function of N. Also, in the infinite-N case, the velocity of
sound is inversely proportional to the square root ofKs @8#.
If we assume that this relationship holds in the finite-N case,
then the velocity of sound will be inversely proportional
Ks

N and the velocity of sound will decrease asN increases.
Hence our simulation results for the velocity of sound m
be reduced before comparing them to experimental resu
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